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In this paper, the oscillating flow around a circular cylinder is investigated numerically
using both a three-dimensional and a two-dimensional model. Two important three-
dimensional regimes of the Tatsuno & Bearman (J. Fluid Mech. vol. 211, 1990, p. 157)
map are investigated: the asymmetric transverse-street regime D, and the double-
pair diagonal regime F. The Stokes number is held constant (β = 20) and the
Keulegan–Carpenter number and the Reynolds number changed so that they match
the conditions of these two regimes.

The cross-sectional vortex streets (V-pattern in regime D and diagonal pattern in
regime F) appear to be unstable, and switching from a pattern to its mirror-image
mode occurs during the simulation. This switching is related to a two-dimensional
instability in the flow field; this phenomenon can be reproduced by pure two-
dimensional simulations.

Three-dimensionality in the flow field always appears after the asymmetric vortex
pattern has fully developed. The main effect of three-dimensionality in the flow field
appears to be a rotation (circumferential effect) along the axial direction of the main
sectional vortex patterns and a time delay along this axis of the switching from a
two-dimensional mode to its mirror-image. These features contribute to generation
of the three-dimensional sinuous S-mode as defined by Yang & Rockwell (J. Fluid
Mech. vol. 460, 2002, p. 93).

The three-dimensionality of the vorticity field affects the dynamic loads induced on
the cylinder. The longitudinal component of the force acting on the cylinder appears
to be weakly affected by three-dimensional effects, and so does its distribution in the
axial direction. This finding explains why the results of two-dimensional simulations
often agree fairly well with the data from laboratory experiments. Conversely, the
transversal force appears to be significantly affected by the three-dimensional flow
field, which suggests that an accurate numerical prediction requires the use of three-
dimensional numerical models.

Finally, a simplified conceptual model explains why the axial variation of the sec-
tional transversal force always appears to be much larger than that of the correspon-
ding longitudinal one. The model also explains why two-dimensional simulations tend
to underpredict the r.m.s. value of the longitudinal force and to overpredict that of
the transversal force, compared to the data from three-dimensional studies.

† Author to whom correspondence should be addressed: armenio@dic.units.it
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1. Introduction
The study of the oscillating flow around circular cylinders is of importance in

off-shore engineering because it is an idealized representation of the wave-induced
loads on cylindrical structures (Bearman 1997). The flow field depends on two non-
dimensional parameters: the Keulegan–Carpenter number and the Reynolds number.
The Keulegan–Carpenter number is KC =UmaxT/D, where Umax is the maximum
velocity of the external oscillating flow, T is the period of oscillation and D is the
diameter of the cylinder, and it is the ratio between the time scale T imposed by
the flow and the inertial time scale D/Umax. The Reynolds number, Re= UmaxD/ν

(where ν is the fluid kinematic viscosity), is the usual ratio between the viscous
time scale D2/ν and the inertial time scale D/Umax. A parameter often used for the
characterization of the flow field is the Stokes number β = Re/KC = D2/T ν. Note
that the Stokes number is independent of the velocity of the outer flow Umax and
can be regarded as the ratio between the viscous time scale and that of the external
oscillating motion T .

The resulting flow field is complex and characterized by vortex shedding, the
pattern of which may change dramatically according to the magnitude of the above
parameters. Vortex shedding tends to be asymmetric, thus generating a transversal
force whose first mode of oscillation is a fraction of the period T of the imposed
motion.

The flow field around a circular cylinder in oscillatory motion in a fluid at rest
has been studied in the past. Several flow regimes have been detected, each of
them characterized by repeatable vortex patterns. Williamson (1985) experimentally
investigated a wide range of KC for very large values of the parameter β , focusing
on vortex shedding in the two-dimensional plane containing the cross-section of
the cylinder, and measuring the forces induced on the cylinder itself. Specifically,
depending on KC, Williamson (1985) has observed pairing of attached vortices, a
transverse street of vortices, a double pair, three pairs, and four pairs of vortices.

By visualizing the flow field around a circular cylinder oscillating in a tank of water,
Tatsuno & Bearman (1990, referred to herein as TB90) identified eight different flow
regimes (A∗, A, B, C, D, E, F, and G), most of which resulted in three-dimensional
flow patterns, depending on the two parameters KC and Re, or equivalently, on KC

and β (figure 1). Two-dimensional symmetric regimes were identified as A∗ and A
respectively in the range of very small KC and large β , and large KC and small β .
At intermediate Stokes numbers an increase in KC gave rise to asymmetry in vortex
shedding and the appearance of a periodical transversal force (regimes B to G).
These regimes were also accompanied by three-dimensional effects, in that organized
vortex structures were observed to develop along the direction of the cylinder’s axis.
Vortex patterns in the cross-sectional planes matched those identified by Williamson
(1985). Two-dimensional as well as three-dimensional vortex structures were clearly
visualized and identified in TB90, although their magnitude was not evaluated. The
axial average wavelength of such vortex structures was found to vary between 0.8D

and 6D depending on the regime of motion depicted in figure 1.
The three-dimensional modes developing along a cylinder in oscillatory motion have

been quantified in a recent paper by Yang & Rockwell (2002, referred to herein as
YR02) for β =73 and small to moderate values of KC, in which results were presented
for 4.5 <KC < 21.4. Referring to figure 1, the YR02 experiments were carried out
in regimes B, E and G, which are asymmetric and three-dimensional. Unlike most
of the investigations cited above (carried out in unidirectional flow) the experiments
by YR02 were performed in a wavy flow characterized by a elliptic trajectory of the
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Figure 1. Map by Tatsuno & Bearman (1990) identifying the different flow regimes in
the KC–β plane. A: symmetric with vortex shedding, two-dimensional; A∗: symmetric
and attached, two-dimensional; B: longitudinal vortices, three-dimensional streaked flow;
C: rearrangement of large vortices, three-dimensional; D: transverse street, three-dimensional;
E: transverse street with irregular switching, three-dimensional; F: diagonal double-pair,
three-dimensional; G: transverse vortex street, three-dimensional. The squares indicate the
cases investigated here.

fluid particles, which decreased in size and tended to be increasingly elongated in the
horizontal direction with increasing depth. YR02 found that either a sinuous S-mode
or an unidirectional U-mode may develop along the axial direction†, as also detected
in the visual analysis by Obasaju, Bearman & Graham (1988) for β > 100. Small-scale
axial modes, with non-dimensional characteristic wavelength 1 < λ= λd/D < 4.5 (λd

is the dimensional wavelength), were found for small values of KC, whereas for
KC � 10 large-scale modes were detected with 10 < λ< 110 (see YR02).

Two-dimensional numerical investigations of the oscillating flow around a circular
cylinder have been performed by Justusen (1991) and by Dutsch et al. (1998). The aim
of these studies was to reproduce the main features of the vortex shedding occurring in
the above-mentioned flow regimes and to evaluate the time evolution of the forces that
act on the cylinder. Justusen (1991) simulated most of the two-dimensional regimes
defined by Williamson (1985), obtaining generally good agreement between numerical
results and experimental data, although he stressed the need for a more realistic
three-dimensional model. Dutsch et al. (1998) used the two-dimensional Navier–
Stokes equations and also performed laboratory experiments for the investigation
of three different flow regimes of the map of TB90, namely regimes A (symmetric),
F (diagonal, double-pair vortex shedding) and E (transverse street). Overall they
obtained good agreement between experimental results and corresponding numerical
predictions for the velocity field and force coefficients. Further computations for the
Stokes number β =35 were carried out mainly in order to compare force coefficients
with the experimental results of Kuhtz (1981). The coefficients derived from the

† According to YR02, the sinuous S-mode corresponds to a sinuous form of the instantaneous
velocity vectors and to a multiple zero-crossing of the near-body crossflow velocity w(y) along the
y-axis in the plane z = 0. Conversely, the unidirectional U-mode is characterized by the unidirectional
movement of the near-body wake and thus by the fact that the near-body crossflow velocity w(y)
maintains its sign along the y-axis in the plane z = 0. For the frame of reference see figure 2.
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numerical predictions were found to be in good agreement with those of the experi-
ments, although some small differences, attributed to three-dimensional effects, were
found.

A three-dimensional flow field is an inherent characteristic of the oscillating flow
around a cylinder, even in the presence of unidirectional forcing. Nonetheless, to
the best of our knowledge, the literature contains no three-dimensional numerical
solutions to be compared with experimental observations of the three-dimensional
vorticity field and force distribution. For example, the three-dimensional numerical
study by Zhang & Dalton (1999) focused on the viscous transition from two to three
dimensions in the wake of the cylinder (the Honji instability, Honji 1981).

To summarize:
(i) Extensive experimental investigations have examined the different flow regimes

occurring in the planes (KC, Re) or (KC, β) by flow visualization, and measurements
have been made of the longitudinal and transversal forces that arise in the above
regimes.

(ii) two-dimensional computations have been performed, in order to reproduce
two-dimensional vortex patterns visualized in the experimental investigations and to
evaluate the longitudinal and transversal forces in several flow regimes.

The three-dimensional features of the phenomenon have not been thoroughly
investigated; their effects on the evolution of the forces, as well as how and to what
extent three-dimensional modes affect the distribution of the sectional in-line and
transversal loads, are still not completely understood (see for example the survey
by Bearman 1997).

The rationale of the present study is as follows: we intend to explore two important
regimes of the TB90 map, the purpose being to reproduce the three-dimensionality of
the flow field and to quantify its effects on the magnitude and on the axial modulation
of the forces induced over the cylinder.

The investigation is performed numerically, solving both the three-dimensional and
the two-dimensional unsteady Navier–Stokes equations. A unidirectional flow field
oscillating sinusoidally in time is considered; the Stokes number is held constant
(β =20); KC and Re are such that two three-dimensional regimes, namely D and F,
of the map of TB90 are explored (see figure 1). Regime D is a transverse-street one,
whereas F is a double-pair diagonal regime. For each regime we analyse the evolution
of the vorticity field and its relationship with the induced loads.

To the best of our knowledge, this is the first investigation that reproduces the three-
dimensional vortex structures visualized by TB90 by means of numerical simulations
and quantifies their effects on the axial distribution of the force components. It is
also the first study which compares the results of three-dimensional simulations with
those of equivalent two-dimensional simulations.

The paper is organized as follows: § 2 contains the mathematical model, and
gives a brief description of the algorithm used for the integration of the governing
equations and validation tests. Sections 3 and 4 contain the results for the two regimes
investigated. Concluding remarks are given in § 5.

2. The problem formulation
We consider a circular cylinder placed in a fluid that undergoes a sinusoidal

oscillation with given frequency and amplitude, in laminar-flow conditions.
We use the primitive-variable formulation of the non-dimensional, unsteady and
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Figure 2. Schematic of the physical problem investigated.

three-dimensional Navier–Stokes (NS) equations written in curvilinear coordinates:

∂Um

∂ξm
= 0, (2.1)
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In (2.1) and (2.2) ui represents the i-component of the velocity field made
dimensionless with the maximum amplitude of the streamwise velocity during the
cycle of oscillation Umax, xi = xd,i/D (hereafter index d refers to dimensional quantities)
with i = 1, 2, 3 or x, y, z are, respectively, the non-dimensional streamwise, axial and
transversal coordinates; t is the time made non-dimensional with the period T and
p = (pd − p0)/ρU 2

max is the non-dimensional pressure where p0 is a reference value.
Further, ξm (m =1, 2, 3) represents the coordinate directions in the computational
space; J −1 is the inverse of the Jacobian of the transformation from the physical
domain to the computational one; Um = J −1(∂ξm/∂xj uj ) is the non-dimensional
contravariant flux through the plane ξm = const, and Gmn = J −1(∂ξm/∂xj )(∂ξn/∂xj ) is
the mesh skewness tensor. In (2.2), Bi is the non-dimensional pressure gradient that
drives the oscillating flow:

Bi = − 2π

KC
δi1 cos(2πt), (2.3)

where δ is the Kronecker symbol. This term is a body force that must be added
when studying the oscillatory motion of a cylinder in a fluid otherwise at rest, using
a frame of reference attached to the cylinder: it corresponds to the forcing term of
equation (2.6) in Dutsch et al. (1998). It is easy to show that the imposed pressure
gradient (2.3) produces a non-dimensional outer velocity u(t) = sin(2πt). Figure 2
shows a schematic of the problem under investigation together with the frame of
reference that has its origin at the centre of the cylinder.

2.1. The numerical method

Equations (2.1) and (2.2) are integrated numerically using the finite-difference non-
staggered-grid fractional-step algorithm developed by Zang, Street & Koseff (1994).
The Adams–Bashforth technique is used for the time advancement of the convective
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terms and of the off-diagonal diffusive terms that arise in non-orthogonal grids
(Gmn �= 0 for m �= n), whereas the diagonal diffusive terms are treated implicitly
using the Crank–Nicolson technique. The spatial derivatives are evaluated using
second-order centred finite differences. A multigrid technique is employed to solve the
pressure equation. The algorithm is overall second-order accurate both in time and
in space.

2.2. Boundary and initial conditions

For a circular cylinder in oscillatory motion in a fluid at rest, the experiments reported
in TB90 have shown that most three-dimensional flow regimes are characterized by
three-dimensional vortex structures that repeat periodically along the axial direction.
The wavelength of the three-dimensional vortex structures has been observed to
range between 0.5 and 6 diameters. Furthermore, the experimental study by YR02
has shown that for values of KC < 10, small-scale three-dimensional vortex structures
can be observed, with values of wavelength similar to those recorded by TB90.

It follows that, for such regimes, periodic conditions can be used along the y-
direction, provided that the length of the cylinder is sufficient to contain the observed
structures. Obviously, an appropriate length of the cylinder must be chosen, being a
compromise between the number of grid cells to be placed along the axial direction
and the length of the cylinder. Considering that (i) we were interested in values
of KC smaller than 10, characterized by the presence of small-scale wavelength as
discussed above, and (ii) that a well-resolved three-dimensional simulation of the
oscillating flow around a very long cylinder (say Ly/D ∼ 20 or more) could not be
carried out because of prohibitive computational efforts, we decided to use a cylinder
length equal to 12 diameters. This enabled us to correctly simulate the small-scale
three-dimensional modes discussed above.

Finally, periodicity was imposed in the transversal and in the longitudinal directions.
As regards the length of the domain in the x-direction, a preliminary analysis carried
out using different lengths and a short cylinder (Ly = 4) showed that in both regimes
investigated the vorticity components decay within 7 to 8 diameters along the x-axis,
hence the length of the domain chosen was equal to 26 diameters. In the z-direction
the width of the domain chosen was equal to 14 diameters; we checked that in all cases
investigated in the present paper, the vorticity components decay to negligible values
within 5 diameters along the z-direction. Finally, no-slip conditions were applied on
the surface of the cylinder. The initial condition in each case was a state of rest.

2.3. Grid generation

We used an H-grid topology such that the physical domain was a rectangular box
that contained the cylinder, doing so in conjunction with a version of the code able to
handle a singularity line within the computational box. This line was transformed into
two halves of the cylinder in the physical domain. The domain was symmetric with
respect to the longitudinal plane z = 0 and to the transversal plane x = 0. The grid is
generated using the technique of Sorenson (1980) which ensures grid orthogonality at
the boundaries and allows specification of the spacing of the first coordinate surface
off the body. In our study, this technique enabled us to generate high-quality grids,
with coordinate lines orthogonal to the boundary surfaces including the body surface,
and closely clustered near the body surface. The grid was uniform in the axial (y)
direction. An example of the grid topology used for the planes y = const is given in
figure 3.
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Figure 3. Typical H-grid used in the computations. The grid is for the (x, z)-planes:
(a) overall view; (b) near-cylinder view.

2.4. Evaluation of the vorticity field and of the time-dependent forces

Analysis of the instantaneous vorticity field can help to identify the vortex structures
that evolve in the flow field. The vorticity field can be expressed by means of the
Cartesian components as

ωi =
∂uk

∂xj

− ∂uj

∂xk

. (2.4)

The derivatives in (2.4) were evaluated at the centre of the grid cells by means
of second-order-accurate centred finite differences, and using the transformation
relationships between the physical coordinates and the computational one,
∂ui/∂xj = (∂ui/∂ξm)(∂ξm/∂xi). Note that the vorticity components were made non-
dimensional with Umax/D.

The time-dependent velocity and the pressure distributions obtained in the simula-
tions were used to evaluate the forces acting on the cylinder. In particular, after
neglecting the component of the force along the axis of the cylinder, because it is very
small and not relevant to the purpose of the study, the total non-dimensional force
could be decomposed into the longitudinal (x) component Fx and the transversal (z)
one Fz:

Fx =
1

ρU 2
maxDLy

[
−

∫
Sc

pdn · i ds −
∫

Sc

ρν
∂uτ

∂n
s · i ds

]
, (2.5)

Fz =
1

ρU 2
maxDLy

[
−

∫
Sc

pdn · k ds −
∫

Sc

ρν
∂uτ

∂n
s · k ds

]
, (2.6)

where i and k are respectively the unit vectors in the streamwise and transversal
directions, n and s are respectively the unit vectors in the normal and tangential
directions over the body surface, ds is the elementary surface, Sc is the surface of the
cylinder, (∂uτ/∂n) is the dimensional shear at the surface of the cylinder and pd is the
dimensional pressure. The forces of (2.5) and (2.6) consist of a pressure and a shear
contribution and they were evaluated at each time step during the computations. We
also defined the non-dimensional longitudinal F s

x (y) and transversal F s
z (y) sectional

forces. These were obtained in like manner to those of (2.5) and (2.6) except that
the surface of integration extended from y to y +	y. They represented the force
components acting on a strip of cylinder of axial length 	y. These forces are made
non-dimensional with ρU 2

maxD	y.
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Dutsch et al. (1998) Dutsch et al. (1998)
three-dimensional two-dimensional (ω − ψ) (coarse) (fine)

Cm 2.47 2.43 2.45 2.45
CD 2.13 2.10 2.10 2.09

Table 1. Morison’s coefficients obtained respectively with the three-dimensional code, with
the two-dimensional (ω–ψ) code, and with the two-dimensional coarse-grid (ncirc = 96) and
fine-grid (ncirc = 384) simulations of Dutsch et al. (1998) in regime A, KC = 5, β = 20, Re =100.

2.5. Validation

The original version of the computer code employed in our analysis has been
extensively validated in the past and widely used to investigate turbulent flow fields
(see for example Armenio & Piomelli 2000; Falcomer & Armenio 2002; Armenio
& Sarkar 2002). In particular, tests on the conservation properties of the algorithm
(Armenio & Piomelli 2000), have shown that it is conservative at the second order
for mass, momentum and kinetic energy. This yields good results using a moderate
number of grid cells. Validation tests were conducted to evaluate the number of grid
cells to be placed in the (x, z)-planes needed for accurate evaluation of the forces
on the body. We performed the tests in regime A, with KC = 5, β = 20 which give
Re= 100, since the available experimental results refer to this case. Specifically, the
test were carried out using Lx = 18, Ly = 1, Lz = 5 and respectively 72 × 8 × 64 points
in the x-, y- and z-directions (with 48 grid points placed along the circumference of
the cylinder). A two-dimensional simulation was also performed for such case using a
computer code which solved the vorticity stream–function (ω–ψ) formulation of the
NS equations in polar coordinates for an isolated cylinder in an oscillatory flow. In this
case, the equations were numerically integrated using a mixed spectral–finite difference
method and an explicit low-storage third-order Runge–Kutta time-marching scheme
(Pentek, Kadtke & Pedrizzetti 1998). The two-dimensional (ω–ψ) simulation was
carried out using respectively 32 and 128 points distributed along the circumferential
and the radial directions.

Figure 4 shows a comparison between the in-line and the transversal components
of the velocity field measured in the experiments by Dutsch et al. (1998) and those
computed with our three-dimensional model. The comparison was performed at
different phase positions tp of the cycle near the surface of the cylinder (note that
tp = (t − NcT )/T where Nc is the cycle of oscillation and NcT < t < (Nc +1)T ). The
velocity field appears to be very well predicted by our computational model and
the agreement between the results of the two-dimensional code and those of the
three-dimensional code is very good. The inertia and drag coefficients of the Morison
equation calculated using the time history of the force obtained with the three-
dimensional model and that of the two-dimensional model were compared with those
obtained by Dutsch et al. (1998) in two-dimensional simulations. The comparison
is reported in table 1. Additional tests were carried out in regime D and regime
F in order to determine the number of grid cells that will yield accurate results in
terms of vorticity field and force components. In particular, tests were carried out
which compared the results of the three-dimensional model with those of the two-
dimensional (ω–ψ) model in the two-dimensional regime (before the three-dimensional
motion develops); an additional re-griding test was performed in order to determine
the number of grid cells in the axial direction needed to ensure accuracy.
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Figure 4. Comparison between the velocity components obtained with the three-dimensional
model and those measured in the experiments by Dutsch et al. (1998), at three transversal
sections in regime A, KC = 5, β =20, Re =100: (a) streamwise component at tp =0.75;
(b) transversal component at tp =0.75; (c) streamwise component at tp = 1.0; (d) transversal
component at tp = 1.0. Symbols and lines refer respectively to experimental and numerical
data (�, x = −0.8; �, x = 0; �, x = 0.8.)

3. Regime D: results
Regime D of TB90 is characterized by an asymmetric vortex shedding in the (x, z)-

planes and by three-dimensional motion. The asymmetric vortex shedding gives rise
to a periodic transversal force, whose period is half that of the imposed oscillation.

In their visual analysis, TB90 have observed that vorticity is shed obliquely from
one side to the other one with respect to the plane z = 0, across the axis of oscillation
(a detailed description of this regime is given in TB90). The flow visualization by
TB90 has also shown the presence of well-defined three-dimensional vortex structures
whose length is a function of β and KC. For β = 20 and KC = 6.5 the average,
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Lx/D Ly/D Lz/D nx × ny × nz ncir Fx,rms Fz,rms

26 12 14 72 × 48 × 88 48 2.76 0.59
26 − 14 72 × 0 × 88 48 2.74 0.66

Table 2. Parameters of the simulations and r.m.s. values of the longitudinal and transversal
forces for the cases studied in regime D (KC = 6.5, β = 20). ncir denotes the number of grid
points placed along the circumference of the cylinder. The vertical grid spacing is 	y =D/4.
The two-dimensional simulation was carried out using a two-dimensional version of the present
three-dimensional model.

non-dimensional axial wavelength λ has been observed to be roughly equal to 4. We
carried out computations considering an axial length of 12 diameters that allowed
small-scale three-dimensional modes (according to the definition given by YR02) to
develop. We have also performed computations using a two-dimensional version of
the solver in order to compare the results obtained with a two-dimensional model
against those of the three-dimensional simulations. The cases investigated for regime
D together with the computational parameters are reported in table 2. The simulations
were carried out for 160 cycles.

During the first few cycles of oscillation the flow field developed symmetrically and
vortex shedding was similar to that of regime A (not shown here). Later on, the flow
field became unstable in that a vortex shed from one side grew larger than that on
the opposite side with respect to the plane z = 0. This produced the progressive rise in
the asymmetric vortex shedding that eventually leads to the V-pattern clearly shown
in TB90.

Our computations showed that, unlike the experiments by TB90, the V-pattern is
not stable; rather we observed that the flow convected to one side of the z =0 plane
intermittently changed its direction to the other side. The period of this switching
was much larger (typically 20 to 50 times) than the period of oscillation of the
fluid. This intermittent switching has already been observed in the experiments by
TB90, but for regime E only. Specifically, they found that both regimes (D and E)
exhibit the V-shaped two-dimensional vortex pattern, the only difference being
in the stable V-pattern appearing in regime D and in the intermittent switching
characterizing regime E. By contrast, our results show that this switching also occurs
in regime D. In order to confirm that this result was not an artifact of the numerical
scheme or of the boundary conditions employed, we ran a 230-cycle simulation with
the two-dimensional (ω–ψ) code of Pentek et al. (1998) using 128 × 128 grid points
respectively in the circumferential and in the radial directions. The results of the
two-dimensional simulation (not reported here) showed that the first switching from
a V-pattern to its mirror-image occurred after about 100 cycles, and it repeated
at irregular intervals during the rest of the simulation. Hence, regime D appears
to be an asymmetric regime characterized by vortex shedding in a V-pattern that
is intermittently switched in time from one side to the other one with respect to
the axis of oscillation. Switching from a V-pattern to its mirror-image seems to be
related to a two-dimensional instability of the flow field, since it can be reproduced
using a two-dimensional simulation. It is not easy to explain why this intermittent
switching occurs. TB90 attributed it to the presence of small disturbances in the flow
field. Dutsch et al. (1998) have performed a stability investigation of a flow regime
characterized by the presence of two modes (one and its mirror-image) finding that
the asymmetric cyclic vortex pattern was only weakly stable and that deviations from
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Figure 5. Iso-lines of the vorticity component ωy: (a) positive vorticity of the upward
V-pattern at the 96th cycle; (b) negative vorticity of the downward V-pattern at the 130th
cycle. Regime D, KC = 6.5 and β = 20, Re= 130. θ denotes the angle of inclination of vortex
shedding with respect to the longitudinal axis. Note that ωy drops by almost one order of
magnitude within three diameters from the cylinder.

periodicity could be detected during the simulation. On the basis of Dutsch et al.
(1998), TB90 and our results, it might be argued that, since a mode of oscillation is
weakly stable, the presence of small disturbances, which are always present either in
a laboratory experiment or in a numerical one, may trigger the transition from one
mode to its mirror-image.

Figure 5 shows the iso-lines of the axial component of vorticity ωy at y = 0 at
two different cycles during the oscillation, namely the 96th and the 130th cycles.
The visualizations of figure 5 clearly show the presence of the two mirror-image
modes during the oscillation, namely the upward and the downward V-shaped vortex
patterns. Each V-pattern is associated with alternate positive and negative vorticity
shed obliquely every half-cycle depending on the sign of the large vortex generated
on the opposite side. Our results are consistent with both the visualization of TB90
(see for example their figures 18 and 19) and with the numerical results for regime E
shown in figure 21 of Dutsch et al. (1998).

The time evolution of the V-patterns has its counterpart in the time record of the
forces acting over the cylinder. Our results show that switching from one V-pattern
to its mirror-image gives rise to a bump-like behaviour in the time record of the
longitudinal force Fx (figure 6ai) and to severe modulations of the transversal force
Fz (figure 6bi), with a time scale order 50 cycles. This behaviour is related to the
direction of vortex shedding and, specifically, to the angle θ defined in figure 5.
By definition, θ is equal to 0 when the V-pattern degenerates into a straight line
and vorticity is shed symmetrically along the longitudinal direction, as in regime A.
When θ =0 (for example along the first 15 cycles of the simulation) the maximum
value of the force Fx remains nearly unchanged from cycle to cycle, whereas the
transversal force Fz is absent. Later, the asymmetry causes vorticity to be shed in
the V-pattern, producing a reduction in the maximum of Fx over a cycle and an
increase in the maximum of Fz. Note that an increase in the maximum longitudinal
force is associated with a decrease in the maximum transversal force and vice versa.
When θ is large, vortex shedding is strongly asymmetric, the maximum of Fz is large
and that of Fx decreases; conversely, when θ is small, vortex shedding tends to be
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Figure 6. Evolution of the in-line (Fx) and transverse (Fz) components of the force along the
cycles, obtained in the three-dimensional and two-dimensional simulations. Also shown are
the time evolution of the forces during a cycle: (ai) longitudinal force of the three-dimensional
simulation; (aii) longitudinal force of the three-dimensional simulation during the 159th
cycle; (bi) transversal force of the three-dimensional simulation; (bii) transversal force of
the three-dimensional simulation during the 159th cycle; (ci) longitudinal force of the
two-dimensional simulation; (cii) longitudinal force of the two-dimensional simulation during
the 137th cycle; (di) transversal force of the two-dimensional simulation; (dii) transversal
force of the two-dimensional simulation during the 137th cycle. Regime D, KC = 6.5, β = 20,
Re= 130.

more symmetric with respect to the z = 0 plane, the maximum of the longitudinal
force increases and that of Fz decreases. When a V-pattern turns into its mirror-image
(Nc ∼ 52, Nc ∼ 120), the maximum along the cycle of Fx increases while the transversal
force tends to disappear. This is due to the symmetry recovered in the vorticity field,
in that, for few cycles, the V-pattern degenerates into a straight line (θ ∼ 0).

In order to check how three-dimensional motion affects the dynamics of vortex
shedding we compared the three-dimensional results with those obtained with a
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Figure 7. Space–time evolution of the non-dimensional vorticity components along the probe
line x = −0.503, z = 0, at the phase tp = 0. (a) ωz; (b) ωy . Grey and white areas denote
respectively positive and negative vorticity. Regime D, KC = 6.5, β = 20, Re= 130.

two-dimensional simulation using the same grid and boundary conditions in the
(x, z)-plane as in the three-dimensional case (see table 2).

Figure 6 shows that three-dimensionality in the flow tends to stabilize the presence
of a V-pattern, in that it increases the time scale for the occurrence of switching from
a mode to its mirror-image.

Three-dimensional vortex patterns appeared during the simulation after the occur-
rence of the two-dimensional instability generating the V-patterns. Figure 7 shows the
evolution in time of the vorticity components ωz and ωy along the line of the symmetry
plane (z = 0) at the first grid point off the surface of the cylinder x = −0.503, and
at a phase tp = 0 corresponding to zero outer velocity. The analysis of figure 7 and
figure 8 shows that an axial mode (A4) with wavelength λ=3 appears first. Triggering
of three-dimensionality occurs around the 30th cycle, well beyond the cycle at which
the two-dimensional asymmetric motion that generates the V-shaped vortex shedding
appears. The amplitude of the three-dimensional mode rapidly increases leading to
regular vortex structures as clearly seen in figure 7. Such three-dimensional vortex
structures persist up to about the 52nd cycle of oscillation. It is remarkable that a
two-dimensional, asymmetric, downward V-pattern (similar to that of figure 5b) starts
to develop around the 10th cycle and maintains its direction up to the 52nd cycle.
At this cycle, a switching occurs from the downward V-pattern to its mirror-image;
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Figure 8. Time evolution of the amplitude of the relevant Fourier modes of the vorticity
components ωz of figure 7(a). Ai denotes the amplitude of the mode with wavelength Ly/i.
Regime D, KC = 6.5, β =20, Re= 130.

the amplitude of the λ= 3 mode decays and a mode with wavelength λ= 1 forms.
Thereafter, an upward V-pattern (as in figure 5a) develops, causing the change of sign
in the transversal vorticity ωz that, in the space–time plot of figure 7(a), exhibits a sort
of chess-board pattern. The three-dimensional motion now appears less regular and
the Fourier analysis of the vorticity shows the presence of five axial modes. Another
switching from the positive to the negative V-pattern occurs around the 120th cycle,
and, like the one occurring around the 52nd cycle, it is accompanied by significant
three-dimensional activity. The spatial distribution of the vorticity components ωz

and ωy at tp = 0 in the plane z = 0 at three significant cycles (figure 9) reflects the
results of the above Fourier analysis. Specifically, a single dominant wavelength was
not discernible during the simulation; rather, visual analysis of the vorticity field
(figure 9) shows that the dominant wavelength changes during the simulation. It is
worth noting that the vortex patterns shown in figure 9(b) are qualitatively in very
good agreement with the dye pattern in figure 20 of TB90.

The visual analysis suggests that, on average, vortex structures with wavelengths
ranging between 3 and 6 are observed in the present case, although λ intermittently
changes during the simulation. However, it should be pointed out that, although the
visual analysis allows identification of a fundamental axial mode, the Fourier analysis
shows that five different modes contribute to the axial distribution of the vorticity
field, and three of them, namely the 2nd, 3rd and 4th, appear to dominate the others.

The main component of vorticity, ωy , does not maintain its sign along the probe
line of figure 7. This behaviour corresponds to the presence of the sinuous S-mode
already detected in the experimental investigation by YR02. Like that study, we
found that the occurrence of the sinuous S-mode is intermittent in time, in that it
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Figure 9. Iso-lines of vorticity components in the plane z = 0 at tp = 0.25: (a) ωz and (b) ωy

at (i) Nc = 64, (ii) Nc = 144 and (iii) Nc =160. Regime D, KC = 6.5, β =20, Re= 130.

can be detected only in small time windows, whereas for most cycles during the
simulation the presence of the three-dimensional unidirectional U-mode is observed.
This phenomenon can be explained through detailed analysis of the vorticity field.
Specifically, the occurrence of the S-mode is not necessarily associated with the
simultaneous presence of the two V-patterns along the axial direction (one and its
mirror-image), or with the occurrence of a complete switching from a two-dimensional
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Figure 10. Iso-lines of the vorticity component ωy at tp = 0 of the 112nd cycle at two different
axial sections: (a) yd/Ly = −0.06; (b) yd/Ly = −0.26. Regime D, KC = 6.5, β = 20, Re =130.
The straight lines indicate the degree of opening of the V-pattern.

mode to its mirror-image along y. In particular, figure 7(b) shows that the S-mode
occurs around the 52nd and the 120th cycles, which are characterized by complete
switching of the two-dimensional mode, and around the 80th cycle, where complete
switching is not observed. In our computations the presence of the S-mode appears
to have been caused by two main factors: circumferential motion of the main two-
dimensional mode (a V-pattern) along y accompanied by a variation of the angle
of opening of the V-pattern along y; and the fact that complete switching from a
V-pattern to its mirror-image does not occur at the same time along y but appears
delayed in time from section to section. The circumferential effect (rotation of the V-
pattern from section to section along y) and the variation of the degree of opening of
the V-pattern along y are clearly seen in figure 10, which shows the iso-lines of ωy at
two significant x, z sections, yd/Ly = −0.06 and yd/Ly = −0.26. The above-mentioned
effects produce a variation in the angle of inclination θ of vortex shedding along y.
Figure 10 shows the 112nd cycle, well before the occurrence of complete switching
from one V-pattern to the other one.

The occurrence of the three-dimensional described above effects influences the axial
distribution of the sectional load as well as the axial integrated values.

Figure 11 shows the maximum variation of the non-dimensional sectional forces,
compared to the corresponding axial-integrated values Fx and Fz. The maximum
variation 	Fx = F s

x,max −F s
x,min of the longitudinal sectional force is small (figure 11a);

indeed it does not exceed 10% of Fx . This result corroborates and extends the finding
by YR02. By indirect analysis of the experimental data, YR02 found that the effect
of the S-mode on the axial variation of the longitudinal force is small.

On the other hand, three-dimensional motion appears to dramatically affect the
axial distribution of the transversal force. Figure 11(b) shows that after the three-
dimensional flow field has fully developed, significant variations of the sectional force
are recorded along y. On average 	Fz =F s

z,max −F s
z,min amounts to about 50−60% of

Fz, although, sometimes, values of 	Fz even larger than Fz are recorded. We found
that large three-dimensional effects in the transversal force appear in conjunction
with the occurrence of the three-dimensional S-mode. In particular, the increase of
three-dimensionality, quantified by 	Fz, is associated with a general reduction in the
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Figure 12. Time evolution of the maximum (- - -) and minimum (—) values of the sectional
transversal force F s

z : (a) around the 52nd cycle; (b) around the 120th cycle. Regime D,
KC = 6.5, β = 20, Re= 120.

axial integrated value Fz. It is remarkable that 	Fz is large when switching from
a V-pattern to its mirror-image occurs, and, interestingly, very large values of 	Fz

are recorded when the axial-integrated value Fz is roughly 0. This behaviour can be
explained by looking at figure 12, which reports the time record of the maximum
and minimum values of the sectional force around the first switching (44 < Nc < 58)
and the second one (103 < Nc < 125). Analysis of figures 7(b), 11, 12 suggests that
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Figure 13. Time evolution of the amplitude of the relevant Fourier modes of the transversal
sectional force F s

z (y) at tp = 0.125. Ai denotes the amplitude of the mode with wavelength
Ly/i. The vertical lines indicate the cycles at which complete switching from a V-pattern to
its mirror-image occurs. Regime D, KC = 6.5, β = 20, Re= 130.

when a V-pattern is well developed and repeats without appreciable variations of θ

along the axial direction, the unidirectional U-shaped mode is observable along y

and the axial variation of the sectional transversal force is always smaller than the
axial-integrated value Fz. This is due to the fact that the sectional force maintains its
sign along the axis. On the other hand, when large variations of θ occur, giving rise
to the S-mode, the sectional transversal force changes its sign along the axis, and the
axial integrated value is smaller than the maximum variation of the sectional force.
By way of example, inspection of figure 12 shows that, on approaching the cycle at
which complete switching occurs along y, the difference between the maximum and
the minimum values of the sectional force progressively increases but still maintains
its sign; later, in the region of the switching, F s

z,max and F s
z,min have opposite signs;

finally, after that switching has been completed and the new V-pattern repeats along
y with small variations in θ the sectional force again maintains its sign during the
oscillation.

The Fourier analysis of the transversal sectional force at tp = 0.125, at which the
axial integrated value is close to the maximum, shows that the large variation in
the sectional force along the axis is related to the presence of the 1st as well the
2nd mode, which appear to be dominant when the S-mode is present (figure 13).
Finally, figure 14 shows a three-dimensional view of the time evolution in the 120th
cycle of the distribution of the sectional transversal force along the axial direction.
This clearly shows that the transversal force does not maintain its sign along the axial
direction and that the large-scale modes mostly contribute to the large variation in
the sectional force.
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4. Regime F: results
Regime F is a double-pair diagonal regime, in which vorticity is shed diagonally

with respect to the axis of oscillation. The mechanism of vortex shedding has been
described by several authors (see for example Williamson 1985; TB90; Dutsch et al.
1998) and will not be repeated here. The angle of inclination of the diagonal pattern
with respect to the longitudinal axis increases with KC. The results of the visual
analysis of TB90 show that for KC < 10 the angle of inclination of the diagonal
vortex pattern θ is small, and, in the far field, the pattern tends to be parallel to
the longitudinal axis. As KC increases (KC > 10) the angle of inclination of the
pattern increases, and vorticity is convected along a straight line that, in the far field,
maintains its angle of inclination. Since there is no reason for vortex shedding to stay
along one diagonal rather than the other during the oscillation, intermittent switching
may occur during the oscillation, similar to that observed in regime D.

Three-dimensional structures have been observed during the oscillation in the
laboratory experiments of both TB90 and Dutsch et al. (1998). These structures
have been shown to repeat periodically over an axial wavelength within the range
3.5 < λ< 6 for β ranging between 10 and 40. The wavelength λ also depends on the
KC parameter, although, as stressed in TB90, any dependence of λ on KC remains
obscure. For the case examined in our investigation KC = 8.5, β = 20, the axial length
of the cylinder chosen was equal to 12 diameters, which allowed for small-scale
axial modes to develop. As in Regime D, we also ran an equivalent two-dimensional
simulation (table 3). The simulations were carried out for 160 cycles.

Figure 15 shows the axial vorticity ωy at four different phase positions in the
half-cycle, after the asymmetric diagonal vortex shedding has developed. The shape
of the diagonal pattern, well shown for example in figure 15(b, c), is consistent with
the value of the Keulegan–Carpenter number (KC < 10), and is similar to that of
figure 25 of TB90. The resulting vortex shedding gives rise to longitudinal as well as
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Lx Ly Lz nx × ny × nz ncir Fx,rms Fz,rms

26 12 14 128 × 72 × 104 64 2.13 0.61
26 − 14 128 × 0 × 104 64 2.11 0.76

Table 3. Parameters of the simulations, and r.m.s. values of the force components for the
case studied in regime F (KC = 8.5, β = 20, Re= 170). The axial grid spacing is 	y =D/6.
The two-dimensional simulation has been carried out using a two-dimensional version of the
present three-dimensional model.

(a)

(c)

(b)

(d)

u(t)

θ

Figure 15. Iso-lines of the vorticity component ωy in the plane y = 0 after the diagonal pattern
has developed (Nc = 42): (a) tp = 0.125; (b) tp =0.250; (c) tp = 0.375; (d) tp = 0.500. Regime
F, KC = 8.5, β =20, Re= 170. The angle θ between the straight lines roughly indicates the
inclination of the diagonal pattern with respect to the longitudinal axis.

transversal forces, as shown in figure 16. During the first few cycles the flow field
is symmetric with respect to the plane z = 0, the time record of Fx appears regular
and repeats without appreciable differences from cycle to cycle, and the transversal
force is absent. Thereafter, the instability leading to the diagonal vortex shedding
increases and a significant transversal force is recorded. It is worth noting that, unlike
regime D, the increase in the diagonal vortex shedding does not significantly affect
the longitudinal force. This is because the inclination of the diagonal pattern with
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Figure 16. Time evolution of the in-line (Fx) and transverse (Fz) components of the force
obtained in the three-dimensional and two-dimensional simulations: Also shown are the typical
time evolution of the forces during a cycle: (ai) longitudinal force of the three-dimensional
simulation; (aii) longitudinal force of the three-dimensional simulation during the 153rd
cycle; (bi) transversal force of the three-dimensional simulation; (bii) transversal force of
the three-dimensional simulation during the 153rd cycle; (ci) longitudinal force of the
two-dimensional simulation; (cii) longitudinal force of the two-dimensional simulation during
the 153rd cycle; (di) transversal force of the two-dimensional simulation; (dii) transversal
force of the two-dimensional simulation during the 153rd cycle. Regime F, KC =8.5, β = 20,
Re= 170.

respect to the plane z = 0 is small. After approximately 30 more cycles the diagonal
pattern has developed, the first switching from this pattern to its mirror-image occurs,
and it repeats at irregular intervals during the simulation. Interestingly, the time
scale of switching is much smaller (order 6 cycles) than that observed in regime D.
Furthermore, comparison between figure 16(bi) and figure 16(di) shows that three-
dimensionality in the flow field seems to enhance the occurrence of switching, as
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Figure 17. Space–time evolution of the non-dimensional vorticity components along the
probe line x = −0.502, z = 0, at the phase tp = 0. (a) ωz; (b) ωy . Grey and white areas denote
respectively positive and negative vorticity. Regime F, KC = 8.5, β = 20, Re= 170.

seen when comparison is made with an equivalent two-dimensional case. Switching
from a diagonal pattern to its mirror-image produces a bump-like behaviour of the
longitudinal force and severe modulations of the transversal one.

The time evolution of the vorticity components ωz and ωy along the probe line z =0,
x = −0.502 shown in figure 17 shows negligible three-dimensional activity during the
first 60 cycles. As in regime D, three-dimensional modulation of the vorticity field
occurs well beyond the cycles at which asymmetry with respect to the plane z = 0 takes
place. Moreover, switching from one two-dimensional mode to its mirror-image can
be reproduced by pure two-dimensional simulations, thus showing that the dynamics
of vortex shedding in the cross-sectional plane is not related to three-dimensionality
in the flow field. The time evolution of the amplitudes of the relevant Fourier modes
of the vorticity ωz (figure 18) shows that the first mode A1 with wavelength λ= 12 first
develops, and that thereafter additional small-scale modes, with wavelength ranging
from 6 to 2.4, appear. Unlike regime D, the leading modes are now the 1st, 2nd
and 3rd. As in regime D, visual analysis of the vorticity component ωy (not reported
here) shows three-dimensional vortex structures in qualitative agreement with the dye
pattern visualized in figure 27 of TB90.

Interestingly, an increase in KC, with a constant value of β , produces an increase
in the average wavelength of the three-dimensional vortex structures along the axial
direction, compared to the previous case of regime D. This phenomenon has already
been observed by YR02, although in their analysis it was not clear whether this effect
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Figure 18. Time evolution of the amplitude of the relevant Fourier modes of the vorticity
components ωz of figure 17(a). Ai denotes the amplitude of the mode with wavelength Ly/i.

could be ascribed to the increase in KC or to the increased three-dimensionality
of the external flow field. In the experiments by YR02, the increase in KC was
strictly related to a corresponding increase of the orbital motion of the fluid particles
and consequently to the increased three-dimensionality of the external motion. Our
analysis, carried out in a unidirectional flow field, shows that the increase of KC by
itself causes the increase in the dominant axial wavelength.

Analysis of figure 17 suggests that, after the three-dimensional motion has fully
developed, the sinuous S-mode appears along the axial direction, at irregular
intervals which are not entirely correlated to the occurrence of switching from a
two-dimensional diagonal pattern to its mirror-image. As in regime D, the sinuous
S-mode seems to be related to the circumferential motion undergone by the main
sectional vortex structure (diagonal pattern) along the axial direction. Of course,
the simultaneous presence of the two two-dimensional modes (one and its mirror-
image) along the axis of the cylinder, already detected in the experimental analysis
by Obasaju et al. (1988) and by YR02 is a prime cause of the sinuous S-mode
developing. Nevertheless, in the present investigation, in which this phenomenon does
not occur, we find that the circumferential rotation of the main two-dimensional
structure contributes to the generation of the sinuous axial S-mode.

Figure 19 shows the maximum variation in the sectional forces in time compared
to the corresponding axial-integrated values. As in the previous case (regime D), the
maximum variation in the transversal force is much larger than that of the longitudinal
one. Specifically, on average, 	Fx is about 20% of the axial-integrated value, whereas
	Fz is always larger than the corresponding axial integrated value Fz. Furthermore,
the maximum variation in the sectional forces, as a percentage of the corresponding
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Figure 19. Time record of the force components (grey line) and of the maximum variation
of the sectional forces 	Fi(t) =F s

i,max − F s
i,min (black line): (a) longitudinal components; (b)

transversal component. Regime F, KC = 8.5, β =20, Re= 170.

axial-integrated values, appears to increase in regime F compared to regime D. This is
probably due to the increased KC and Reynolds numbers. Interestingly, the fact that
the maximum variation of the sectional force is always larger than the axial-integrated
value now appears related not to time delay in the switching from one two-dimensional
mode to the other along the axis, but to the circumferential rotation of the diagonal
vortex pattern along the y-axis. This is illustrated in figure 20, which shows the time
evolution of the maximum and minimum values of the sectional transversal force
along the y-axis. Unlike in regime D, figure 20 shows that the sectional transversal
forces oscillate in phase, because during the oscillation the sectional force maintains
its sign along the axial direction. This is the evidence that a single two-dimensional
mode is present along the y-axis at a certain time instant and that switching from
this mode to its mirror-image occurs at the same time along y. The circumferential
motion undergone by the main two-dimensional vortex structures along y, visible for
example in the three-dimensional view of figure 21, is by itself thus able to produce
the large variation in the sectional transversal force shown in figure 19(b). The typical
evolution along a cycle of the transversal sectional force F s

z (y) reported in figure 22
shows the presence of a dominant mode with wavelength λ=12, although the Fourier
analysis of F s

z (y) (not given here) clearly shows that the first two modes contribute
to the axial distribution of the sectional force. To be noted is that the presence of
the λ=12 axial mode is consistent with the experimental results by YR02, which
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Figure 20. Time record of the maximum (- - -) and minimum (—) transversal sectional force
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Figure 21. Instantaneous three-dimensional view of the vorticity ωy near the cylinder, at the
phase tp = 0 of the 141st cycle. Regime F, KC = 8.5, β = 20, Re= 170.

showed the increase in the axial wave mode with KC. On the other hand we cannot
exclude the presence of additional large-scale modes, although YR02 showed that for
KC < 10 small-scale modes are mostly detected. Verification would require the use of
a very long cylinder (say Ly � 18), beyond our present capabilities.
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5. Discussion and concluding remarks
The sinusoidal, unidirectional, oscillating flow around a circular cylinder has been

investigated numerically by solving the three-dimensional and the two-dimensional
unsteady Navier–Stokes equations.

Two regimes of the TB90 map have been studied: the transverse-street three-
dimensional regime D and the double-pair diagonal, three-dimensional regime F.
To the best of our knowledge this is the first investigation in which the three-
dimensional structures visualized in TB90 have been reproduced by means of
numerical simulations; the effect of three-dimensionality of the vorticity field on
the axial distribution of the forces is quantified; and the results of three-dimensional
computations are compared to those of equivalent two-dimensional ones.

The two-dimensional features of the flow field are not qualitatively affected by
three-dimensional effects. Specifically, the asymmetric motion in the sectional planes
that gives rise to the V-pattern of regime D and the diagonal pattern of regime F,
as well as switching from a pattern to its mirror-image, are inherent features of the
two-dimensional field. The occurrence of such vortex dynamics should be related to
a two-dimensional instability in the flow field. In fact, the vortex patterns discussed
above as well as their switching from one direction to the other can be simulated
using pure two-dimensional models.

The three-dimensional simulation produced two main three-dimensional effects in
the flow field:

(i) a circumferential motion of the main sectional vortex pattern along the y-axis.
The transverse-street pattern of regime D as well as the diagonal pattern of regime F
tend to be rotated around the axis of the cylinder, and the rotation can exhibit a sort
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of sinuous behaviour along y, as illustrated in figure 21. In the transverse-street regime
the circumferential rotation of the V-pattern is also accompanied by a variation along
y of the degree of opening of the V that may degenerate into a straight line. These
circumstances contribute to varying the angle of inclination of the sectional vortex
pattern along y.

(ii) a time delay along y of the switching from a fundamental two-dimensional
mode to its mirror-image. In other words, complete switching from one pattern to
the other does not occur at the same time along the axis; rather, it appears delayed
from section to section.

The experimental investigations by Obasaju et al. (1988) and by YR02 have
highlighted the possibility that the two modes (one and its mirror image) may
be present at the same time along the axis of the cylinder. The presence of the
sinuous S-mode along the y-direction has been associated with this behaviour. In
our computation we did not observe the simultaneous presence of the two two-
dimensional modes along the axis, probably because in our investigation the Stokes
number (β =20) was much smaller than that of YR02 (β = 73) and that of Obasaju
et al. (1988) (β > 100). On the other hand we observed that the presence of the
sinuous S-mode is not necessarily associated with the simultaneous presence of the
two fundamental two-dimensional modes along the axis (one and its mirror image).
Indeed, the sinuous mode can also be generated by the two effects discussed above,
namely circumferential motion and time delay of complete switching along the y-
direction.

The effect of three-dimensional motion on the occurrence of switching is not
monotonic. In regime D, three-dimensional effects tend to stabilize the presence of a
certain V-pattern and the time scale of complete switching increases compared to that
obtained with an equivalent two-dimensional simulation; in regime F, the opposite is
true. Thus it is not possible to say a priori whether or not three-dimensionality acts
to stabilize the presence of a particular vortex pattern. This may be due to several
features, such as the type of two-dimensional vortex pattern (V-shaped rather than
diagonal), or to the intensity of the fundamental two-dimensional motion in terms
of the mean inclination of the two-dimensional vortex pattern with respect to the
longitudinal axis.

Our results are qualitatively in good agreement with those of YR02. However, it
should be pointed out that our simulations were carried out in unidirectional flow,
whereas the experiments of YR02 were performed in a wavy flow, where the increase
in KC was associated with a corresponding increase in the vertical motion of the fluid
particles, and thus with the three-dimensionality of the external flow field. Hence it
is possible to argue that most of the features observed in the experiments by YR02,
such as the occurrence of the axial S-mode and the increase in the dominant axial
wavelength with KC, were not related to three-dimensional forcing, because they are
also observable in a unidirectional motion.

The definition of the fundamental axial wavelength λ, which can be easily detected
by means of a visual analysis, gives information on the average spanwise dimension
of the vortex structures present in the flow field. The visual analysis by TB90 shows
that λ slightly decreases with β , is nearly independent of KC when remaining within a
certain flow regime, and increases with KC for the same β when moving from regime
D to regime F (compare, for example, figure 22 to figure 30 of TB90). Our results
are consistent with the visual analysis by TB90, in that one observes an increase in
the average wavelength with KC between regime D and regime F. These results, as
discussed above, are also consistent with the finding of YR02.
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Figures 22 and 30 of the visual study of TB90 show that the values of λ appear
to be scattered when plotted against β for several values of KC. This may be due to
the fact that those authors calculated an average value of the axial dimension of the
vortex structures in cases characterized by strong variability in such wavelengths. Our
computations show that, for a given couple of values of β and KC, different wave-
modes may be dominant at different cycles during the simulation, making evaluation
of an average wavelength very difficult. For example, figure 9 clearly shows that,
although the shape of the vortex pattern in the plane z = 0 does not change during
the simulation, the axial length of such patterns varies from three to six diameters.
Similar behaviour is observed in regime F.

This behaviour suggests that the average wavelength λ does not entirely determine
the axial wave components present in the flow field. Indeed, the Fourier analysis
shows that after the three-dimensional motion has developed, several modes make
up the three dimensional distribution of the vorticity field. In particular at least three
wave components appear to be dominant in each case investigated, giving rise to an
appreciable variability in the wavelength λ observable in a visual analysis.

The three-dimensional flow field affects the dynamic loads induced on the cylinder.
The r.m.s. value of the axial-integrated component Fx evaluated using the two-
dimensional model is slightly smaller than that obtained with the three-dimensional
computations. In particular the two-dimensional computations underestimate Fx,rms

by less than 1% on both regimes investigated (see table 2 and table 3). The variation
in the sectional longitudinal force along the axis of the cylinder is small during the
simulation. In particular, the maximum variation 	Fx(t) amounts to about 10% and
20% respectively in regime D and regime F. Our results corroborate and extend the
findings of YR02, who, on analysing the time record of the moment induced by the
longitudinal force, have argued that Fx is weakly affected by three-dimensionality in
the flow field.

The transversal force behaves differently from the longitudinal one. The r.m.s.
value of the axial-integrated component Fz estimated with the two-dimensional
mathematical model is appreciably larger than that estimated using the three-
dimensional model in both regimes investigated. Specifically, in regime D and in
regime F, the two-dimensional computation overestimates Fz,rms by about 12% and
25% respectively (see table 2 and table 3). Moreover, the maximum variation in the
sectional transversal force along y, namely 	Fz(t) = F s

z,max(t) − F s
z,min(t), is very large

and often exceeds the axial integrated value.
These effects are related to the presence of the axial sinuous S-mode, which, in

the present case is generated by the circumferential motion of the sectional vortex
patterns and by the time delay of switching from one pattern to the other, along the
axial direction.

We have observed that the main three-dimensional effect over the induced loads
consists of a small increase in the r.m.s. value of the axial-integrated longitudinal force
Fx and in an appreciable reduction in Fz,rms . On the other hand, the time records of
figures 6 and 16 show that the increase in the maximum of Fx from cycle to cycle is
associated with a reduction in Fz and vice versa. These effects can be explained as
follows. Consider the total sectional force Fs(y), whose components are respectively
the already defined F s

x (y) and F s
z (y); and specifically consider the angle of inclination

φ = arctanFz/Fx of the vector Fs with respect to the longitudinal axis. Figure 23
shows that the angle φ(y, t) varies along y from cycle to cycle at a phase position
tp = 0.125 at which both force components Fx and Fz are close to a local maximum
in regime D as well as in regime F (see figure 6aii, bii and figure 16aii, bii). Figure 23
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Figure 23. Evolution from cycle to cycle of the angle of inclination of the total force with
respect to the plane z = 0, (φ(y, t)) at tp = 0.125: (a) Regime D, KC = 6.5, β = 20, Re= 130;
(b) Regime F, KC = 8.5, β = 20, Re= 170. The contour levels go from −50◦ to 50◦ for regime
D and from −35◦ to 35◦ for regime F.

shows large variations of φ along the y-axis, and a comparison with figure 7 and
figure 17 shows that the change of sign of φ along y is closely correlated with the
occurrence of the S-mode, the latter being detected by the change of sign of ωy at the
probe lines previously defined.

On the basis of these observations, consider a vortex pair shed in the wake of the
cylinder during the oscillation. For simplicity, suppose that the intensity of the vortex
pair does not change along the axial direction, and that three-dimensionality in the
flow field is such as to cause a variation along the axial direction of the angle of
inclination θ of the vortex pattern with respect to the plane z = 0. The above vortex
pair induces a force Fs(y) inclined by an angle φ(y) with respect to the line z = 0,
and we can assume that φ(y) is roughly equal to θ(y). The force components in the
longitudinal and transversal direction will be respectively F s

x (y) = |F s | cosφ(y) and
F s

z (y) = |F s | sin φ(y). If φ(y) is very small, we can write F s
x ∼ |F s | and F s

z ∼ |F s |φ.
It follows that small variations in the angle φ along the y-axis, also including the
change of sign of the angle itself, give rise to large variations in F s

z (y) that may exceed
the axial-integrated values, and very small variations in the longitudinal component
F s

x (y). The increase in the angle φ, still remaining confined within the range of
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small-to-moderate values (φ about 10◦ to 40◦), causes smaller variations in the
longitudinal component compared to the corresponding variations in the transversal
one. This may explain why three-dimensional effects on the longitudinal force appear
to be much weaker than those on the transversal force. Moreover, the simple
explanation given above shows that a reduction in the longitudinal force from cycle to
cycle, which appears to be associated with a corresponding increase in the transversal
one and vice versa, is basically due to the time variation in the angle of inclination
of the vortex pattern and thus to the corresponding variation of φ.
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